KMAP による自動車の制御(1) – ハンドル操作時の運動

2017(H29).12.2 片柳亮二

【自動車の運動の基礎事項】

自動車には前後に2つずつタイヤがあるが、旋回運動を考える場合、 旋回半径が左右のタイヤ間の距離(トレッド)に比べて十分長いことか ら、図1に示すように、左右のタイヤを1つとして近似的に扱う2輪車 モデルが使用できる.ここでは、航空機の機体軸³⁾と同様に扱い、次の ように定義する. *x*軸は自動車に固定した軸で自動車前方を正、*y*軸は 重心右側を正、*z*軸(この図では現れていないが)は自動車下方を正とす る⁴⁾.

図1 自動車の2輪車モデル¹⁾

図 1 において、Vは自動車の速度で β は横滑り角、 F_{1y} および F_{2y} は前輪(2つ)および後輪(2つ)に働くサイドフォース、 Δl は合力($F_{1y} + F_{2y}$)の作用点と重心との距離で重心よりも後方を正、 l_1 および l_2 は重心から前輪および後輪軸までの距離, $l = l_1 + l_2$ はホイールベースである.このとき、 z軸まわり(図 6.1-1 で時計まわりを正)のモーメントNは次のように表される.

$$N = -F_{1y}l_1 + F_{2y}l_2 = (F_{1y} + F_{2y}) \cdot \Delta l \tag{1}$$

このモーメントNが正の場合には自動車の横滑り角は減少する傾向で 静的方向安定である.またNが負の場合には横滑り角は増加する傾向で 静的方向不安定である.(1)式からNの正負は Δ の正負と同じ傾向であ る.すなわち,横滑り運動による合力が重心よりも後方にある場合には 静的方向安定となる.(1)式のNが 0 となる位置(合力の着力点)をニュ ートラルステアポイント(NSP; Neutral Steer Point)という.

(1)式から*山*の値は次式である.

$$\Delta l = \frac{-F_{1y} l_1 + F_{2y} l_2}{F_{1y} + F_{2y}} \tag{2}$$

2

また,このΔlをホイールベースlで割った次式はスタティックマージン (Static Margin; S.M.)と呼ばれる.

S.M. =
$$\frac{\Delta l}{l} = \frac{-F_{1y}l_1 + F_{2y}l_2}{(F_{1y} + F_{2y}) \cdot l}$$
 (S. M. > 0 なら静的方向安定) (3)

次に、タイヤの摩擦力についても次のような性質がある.回転してい る車輪のタイヤが横滑りしている場合の摩擦力は、図2に示すように、 車輪1のタイヤが横滑り角β₁で回転しているときは摩擦力F₁が発生する. 摩擦力は x 軸方向の抗力 F_{1x} と y 軸方向のサイドフォース F_{1y}に分解して 表される.また、速度方向のコーナリング抵抗 D'₁ とそれに直角な方向の コーナリングフォース F'₁に分解して表される.タイヤの特性はコーナリ ング抵抗とコーナリングフォースで表されることが多い.

図 2 車輪 1(前輪 2 つ)のタイヤに働く摩擦力¹⁾

図2から次の関係がある.

$$\begin{cases} F_{1x} = D'_{1} \cos \beta_{1} - F'_{1} \sin \beta_{1} \\ F_{1y} = F'_{1} \cos \beta_{1} + D'_{1} \sin \beta_{1} \end{cases}, \quad \begin{cases} D'_{1} = F_{1x} \cos \beta_{1} + F_{1y} \sin \beta_{1} \\ F'_{1} = F_{1y} \cos \beta_{1} - F_{1x} \sin \beta_{1} \end{cases}$$
(4)

コーナリングフォース F_1 は横滑り角 β_1 が 5°程度まではほぼ β_1 に比例して増加するので、次のようになる.

$$\begin{cases} F_{1y} \approx F_1' = K_1 \beta \\ F_{2y} \approx F_2' = K_2 \beta \end{cases}$$
(5)

ここで, *K*₁および*K*₂をコーナリングパワーという. 次に,ハンドルを操作した場合の自動車の運動を考える.図3に示す ように、運動は車両に固定したx, y座標系によって表すのが便利である. 前輪タイヤの実舵角を δ ,重心の横滑り角を β ,重心のヨー角速度をr,前輪および後輪タイヤの横滑り角を β_1 および β_2 ,重心,前輪および後輪の速度をV, V_1 および V_2 とする. F'_1 および F'_2 は前輪および後輪のコーナリングフォース, T_1 および T_2 は推進力である.

図 3 ハンドル操作時の 2 輪車運動モデル¹⁾

このとき、車両に固定した回転座標系x,yにおいて、y方向の運動方程式とz軸まわりの運動方程式は次のように表される¹⁾.

$$\begin{cases} \dot{\beta} = -\frac{K_1 + K_2}{mV} \beta - \left(1 + \frac{K_1 l_1 - K_2 l_2}{mV^2}\right) r + \frac{K_1}{mV} \delta \\ \dot{r} = -\frac{K_1 l_1 - K_2 l_2}{I_z} \beta - \frac{K_1 l_1^2 + K_2 l_2^2}{I_z V} r + \frac{K_1 l_1}{I_z} \delta \end{cases}$$
(6)

この式を行列で表すと次のようになる.

$$\begin{bmatrix} \dot{\beta} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} -\frac{K_1 + K_2}{mV} & -1 - \frac{K_1 l_1 - K_2 l_2}{mV^2} \\ -\frac{K_1 l_1 - K_2 l_2}{I_z} & -\frac{K_1 l_1^2 + K_2 l_2^2}{I_z V} \end{bmatrix} \cdot \begin{bmatrix} \beta \\ r \end{bmatrix} + \begin{bmatrix} \frac{K_1}{mV} \\ \frac{K_1 l_1}{I_z} \end{bmatrix} \delta$$
(7)

(ハンドル操作時の運動方程式)(β,r,δは deg 系)

(7)式において、速度V一定、実舵角 δ 一定状態では、自動車は旋回半径R一定の定常旋回運動をする.このとき(7)式で $\dot{\beta}$ = \dot{r} =0 とおいた式から、定常旋回時のヨー角速度rが次のように得られる.

$$\frac{r}{\delta} = \frac{K_1 K_2 (l_1 + l_2) V}{K_1 K_2 (l_1 + l_2)^2 - m (K_1 l_1 - K_2 l_2) V^2}$$
(8)

ここで、 $l = l_1 + l_2$ (ホイールベース)とおき、 $V(m/s) = R(m) \cdot r(deg/s)/57.3$ の関係を用いて(8)式を変形すると次式が得られる.

$$R = \frac{V}{r} \times 57.3 = \left(1 + \frac{m(-K_1 l_1 + K_2 l_2)}{K_1 K_2 l^2} \cdot V^2\right) \frac{l}{\delta} \times 57.3$$
(9)

この式を(3)式のスタティックマージン S.M.を用いて表すと次のようになる.

$$\frac{R}{R_0} = 1 + \frac{m}{l} \cdot \left(\frac{1}{K_1} + \frac{1}{K_2}\right) \cdot (S.M.) \cdot V^2$$
(10)

ここで, $R_0 = 57.3 l/\delta$ は速度V=0の場合のRの値である.また,右辺第 2 項の V^2 の係数(次式)はスタビリティファクター(Stabilty Factor; S.F.)と呼ばれる.

S.F. =
$$\frac{m}{l} \cdot \left(\frac{1}{K_1} + \frac{1}{K_2}\right) \cdot (S.M.)$$
, S.M. = $\frac{-K_1 l_1 + K_2 l_2}{(K_1 + K_2) \cdot l}$ (11)

図4 定常旋回特性

図4に示すように、一定速度、一定実舵角で定常旋回している状態から、速度を増やした際に旋回半径が大きくなるときアンダーステア(Under Steer; U.S.)、旋回半径が変わらないときニュートラルステア(Neutral Steer; N.S.)、旋回半径が小さくなるときオーバーステア(Over Steer; O.S.)という. O.S.はハンドルを切りすぎた状態である.

【問題】(7)式の運動方程式を用いて、ハンドルを操作した時の自動車の運動特性を求めよ.ただし、自動車の諸元データは以下とする⁴⁾.

 $\begin{array}{ll} m = 1100 \, (\mathrm{kg}) \,, & I_z = 1600 \, (\mathrm{kg} \cdot \mathrm{m}^2) \,, & K_1 = 32000 \, (\mathrm{N/rad}) \,, \\ K_2 = 45000 \, (\mathrm{N/rad}) \,, & l_1 = 1.15 \, (\mathrm{m}) \,, & l_2 = 1.35 \, (\mathrm{m}) \\ V = 100 \, \mathrm{km/h} \end{array}$

【解】

KMAP で解析する.

次のようにキーイン

KMAP(バージョン 114 以降)を起動して、
①「KMAP***解析内容選択画面」⇒ "4"キーイン
②「データファイル利用方法」⇒ "3"をキーイン
③「例題ファイルデータの取得」⇒例として、"3"をキーイン
④「3:機械システム制御の実際の例題」⇒ "42"キーイン 例題のインプットデータ ⇒ EIGE. PRB6. 2-1. DAT
⑤「新しいファイル名入力してください」と表示されるので、以下、

0 0 1 5

これで解析計算が実行されて、安定解析結果が次のように表示される.

***** POLES AND ZEROS ***** POLES(2), EIVMAX= 0.4646D+01 N REAL IMAG 1 -0.26566154D+01 -0.38115386D+01 [0.5718E+00, 0.4646E+01] 2 -0.26566154D+01 0.38115386D+01 周期 P(sec)= 0.1648E+01 ZEROS(1), II/JJ= 5/1, G= 0.2300D+02 N REAL IMAG 1 -0.31990218D+01 0.0000000D+00

この画面を消すと、「解析結果の表示」の画面になるが、画面を上にスク ロールすると、次の AP, B2 行列およびスタティックマージンが次のよう に表示されている.

次の「解析結果の表示」に戻す.

ここで、「1」および「7」とキーイン/Enter すると、極・零点、ボード 線図およびδ操作応答が次のように Excel で表示することができる.

図 5 は r/δ の極・零点,図 6 は r/δ の周波数特性である.この運動は、 減衰比のよい安定な 2 次遅れの特性であることがわかる.図 7 は、1~3 秒に δ =1°, 3~5 秒に δ =-1°に操舵した場合のヨー角速度rおよび横滑

り角 β のシミュレーション結果であるが安定した特性であることが確認できる.

「解析結果の表示」で15とキーインすると、このケースのインプット データが表示される.

(同様な問題では, 例題ファイルをコピー利用して, 数値を変更して解析 を行っていくとミスを防ぐことができる)

NXP	= 2									
tmax(s)	= 40.000									
1. NU1> 8										
T , U1	0.0000	0.0000								
	1.0000	0.0000								
	1,0010	1.0000								
	3,0000	1.0000								
	3 0010	-1 0000								
	5 0000	-1 0000								
	5 0010	0 0000								
	60 0000	0.0000								
3 NII3> 2	00.0000	0.0000								
T 112	. 0.000	0 0000								
Ι, ΟΟ	60,0000	0.0000								
	00.0000	0.0000								
5. NU5> Z										
I, U5	0.0000	0.0000								
	60.0000	0.0000						_		
*******10****	****20*******3	0*******	40:	*******50***	****	*60*	****	***7	()****	***
<積分数, IRIG,	TDEBUG 時間, 補	間関数>	3	0 0.0 0						
<control< td=""><td>System Data></td><td>Н</td><td>i :</td><td>*GAINN</td><td>ICAL*</td><td>N01*</td><td>N02*</td><td>N03*</td><td>NGO*L</td><td>NO</td></control<>	System Data>	Н	i :	*GAINN	ICAL*	N01*	N02*	N03*	NGO*L	NO
1 //AP, B2 行	テ列データ設定									
2 H1=G;(m)		Н	0	0.1100E+04	11	1	0	0	0	0
3 H2=G;(Iz)		Н	0	0.1600E+04	11	2	0	0	0	0
4 H3=G;(K1)		Н	0	0.3200E+05	11	3	0	0	0	0
5 H4=G; (K2)		Н	0	0.4500E+05	11	4	0	0	0	0
6 H5=G;(L1)		Н	0	0.1150E+01	11	5	0	0	0	0
7 H6=G; (L2)		Н	0	0.1350E+01	11	6	0	0	0	0
8 //										
9 H7=H3+H4:	(K1+K2)	н	0		21	7	3	4	0	0
10 H8=H3*H5:	(K1 * 1)	н	0		23	8	3	5	Õ	Ő
11 HQ=H/*H6	$(K_{2*} _{2})$	н	ň		23	ă	٥ ٨	6	ň	ň
12 H10-H8+H5	(K2+22) (K1+1++2)	н	0		20	10	Q	5	ň	ň
), (NITEITTZ) (* (KOyl Oyy))		0		20	11	0	6	0	0
	Ι, (ΝΖΥΓΖΥΥΖ)		0	0 27005,02	11	10	9	0	0	0
	0:(m)()	п 11	0	0. 2700E+02	11	12	1	10	0	0
	Z, (IIIV)		0		23	13	10	12	0	0
	11Z, (MV**Z)		0		23	14	13	12	0	0
I/ HI5=H2*HI	2;(IZV)	н	0		23	15	2	12	0	0
							_			
19 H16=H//H1	3;((K1+K2)/(mV))) H	0		24	16	1	13	0	0
20 H17=H16*G	i; (AP11)	Н	0	-0.1000E+01	17	17	16	0	0	0
21 H18=H8-H9);(K1L1-K2L2)	Н	0		22	18	8	9	0	0
22 H19=H18/H	14; (K1L1-K2L2)/	mV**2) H	0		24	19	18	14	0	0
23 H20=G; (-1)	H	0	-0.1000E+01	11	20	0	0	0	0
24 H21=H20-H	119;(AP12)	Н	0		22	21	20	19	0	0
25 H22=H18/H	12; ((K1L1-K2L2)/	Iz) H	0		24	22	18	2	0	0
26 H23=H22*G	i; (AP21)	Н	0	-0.1000E+01	17	23	22	0	0	0

27 28 29	H24=H10+H11;(K1L1**2+K2L2**2) H25=H24/H15;(H24/IzV) H26=H25*G:(AP22)	H H H	0 0 0	-0 1000F+01	21 24 17	24 25 26	10 24 25	11 15 0	0 0 0	0 0 0
30 31	// H27=H3/H13; (B2-11=K1/mV)	H	0	0.10002.01	24	27	3	13	0	0
32 33 34	H30=H8/H2; (B2-21=K1L1/Iz) // AP(I1_J1)H17:	н	0		24 621	30	8	2	0	0
35 36	AP (I1, J2) H21; AP (I2, J1) H23;	H H	0000		621 621	1	2 1	21 23	0	0
37 38 39	AP (12, J2) H26, // (コントロール入力) = (Z1, Z3, Z5) B2 (I1, J1) H27;	н	0		621	2	2 1	26	0	0
40 41	B2(I2, J1)H30; //	H	0		623	2	1	30	0	0
42 43 44	{Print(AP,B2,CP)}I2J1K1; //(コントロールZ1に強制力インプット) フ1=U1*G・	н	0	0 1000E+01	671 52	2	1	1	0	0
45 46	//(Staic Margin) H31=H9-H8;(K2L2-K1L1)	H	0	0.10002.01	22	31	9	8	0	0
47 48	H32=H31/H7; (H31/(K1+K2)) H33=H5+H6; (L=L1+L2)	H	000000000000000000000000000000000000000		24 21	32 33	31 5	7 6 22	0 0	0 0
49 50 51	H34=H32/H33; (S.M.) {P}H34; //	н Н	0		601	34 34	32 0	33 0	0	0
52 53 54	//安定解析出力に追加する場合 //は、下記にR(6+NXP)~を設定. //シミュレーション用出力(Z191~Z200) //(このぎょねがTES6_DAT/にえる)									
56 57 58	Z191=Z6*G; (x1) Z192=Z7*G; (x2) 7193=71*G; (INPIIT)	H H H	0 0 0	0. 1000E+01 0. 1000E+01 0. 1000E+01	53 53 53	191 192 193	6 7 1	0 0 0	0 0 0	0 0 0
59 60 61	//(最後に次の END 文が必要) {Pitch Data END}; //*	н	0		899	888	887	886	0	0
62 63	//*(注1)状態方程式使用の場合 //* Z1, Z3, Z5 :制御入力設定3	済								
64 65 66	i4 //* Z6~(NXP 個) : 状態変数設定済 i5 //* Ri は安定解析の出力で下記注意 i6 //* R6~(NXP 個) : 状態変数に対応									
67 68 60	37 //* R(6+NXP)~Rn∶出力変数の追加 38 //* 解析出力キーインは i=4~(R設定数)									
70 71	ッ / / * '0 / / * (注 2) 状態方程式使用しない場合 '1 / / * Zi は全て通常の Z 変数									
72 73 74	//* R6~出力変数を設定 //* 解析出力キーインは i=4~(R 設定) //\$	数) 								
 探索	//***********************************	囲)-								
重∂ *** 極の	9條数= 0.0000E+00 影響範囲(rad ☆**(ゲイン最適化一重み関数 ₩(s))∜ 数=0	d/s) ****	= *	0.0000E+00						
零 点 ゲ イ	数= 0 ン= 0.0000E+00									
75	$\begin{array}{c} X(2) = 0.0000E+00\\ \text{{Control Data END};} \end{array}$	Н	0		999	0	0	0	0	0
	(DATA E	END)								

このインプットデータの制御則部は、「解析結果の表示」画面で「101」 および「102」とキーインすると、次の KMAP 線図で確認できる.

図 9 KMAP-H 線図

図 8 の KMAP 線図は,インプットデータの制御則部をそのデータ順に図 にしたもので,信号の流れにミスがないか確認するのに便利である.

また,図9の KMAP-H 線図は,計算に用いられる中間変数 H についての 信号の流れを図にしたものである.

次に,自動車運動の走行軌跡は図8のように計算することができる1).

図8 自動車の走行軌跡の計算ブロック図

KMAP で走行軌跡を計算してみよう.

KMAP(バージョン 114 以降)を起動して,
①「KMAP***解析内容選択画面」⇒ "4" キーイン
②「データファイル利用方法」⇒ "3" をキーイン

- ③「例題ファイルデータの取得」⇒例として、"3"をキーイン
- ④「3:機械システム制御の実際の例題」⇒"44"キーイン

例題のインプットデータ ⇒ EIGE. PRB6. 2-1B. DAT

⑤「新しいファイル名入力してください」と表示されるので,以下, 次のようにキーイン

0 0 1 5

これで解析計算が実行されるので、「解析結果の表示」の画面で、「10」 とキーイン/Enter すると、走行軌跡が次のように Excel で表示すること ができる.

図 9 から,自動車は安定に走行していることが確認できる.なお,ス タティックマージン(S.M.)は 0.1244 で正であるので US である.

(参考図書)

- 1) 片柳亮二:機械システム制御の実際-航空機,ロボット,工作機械, 自動車,船および水中ビークル,産業図書,2013.
- 2) 片柳亮二:初学者のためのКМАР入門,産業図書,2012.
- 3) 片柳亮二: 航空機の飛行力学と制御, 森北出版, 2007.
- 4) 景山克三, 景山一郎:自動車力学, 理工図書, 1984.
- 5) カヤバ工業(株):自動車の操舵系と操安性、山海堂、1996.
- 6) 安部正人:自動車の運動と制御,東京電機大学出版局,2008.
- 7) <u>http://r-katayanagi.air-nifty.com/</u>

以上